Digi Connect ME-IA

 AUTONUMLGL \e
Overview

In general the Digi Connect ME-IA follows the behavior of the Digi One IAP product. (formerly called Digi One IA RealPort). Thus connecting a Digi One IAP configured as a Modbus bridge to your serial device gives a good approximation of the behavior of an integrated Digi Connect ME-IA within your product.

 AUTONUMLGL \e
Modbus Functionality

 AUTONUMLGL \e
Hardware and General Specifications

 AUTONUMLGL \e
Digi Connect ME-IA supports published hardware specification for Digi Connect ME, including baud rates, power usage and so on.

 AUTONUMLGL \e
Digi Connect ME-IA supports most published Ethernet and TCP/IP specification for Digi Connect ME, including DHCP and so on. “Application Functions” that do not apply to Modbus device such as pmodem or SNMP traps will not exist.

 AUTONUMLGL \e
Serial Modbus Protocol

 AUTONUMLGL \e
The ME-IA supports either Modbus/RTU or Modbus/ASCII. It is not auto-sensing but must be configured for 1 or the other. Modbus/RTU should be used whenever possible since it requires ½ the number of data bytes as Modbus/ASCII.

 AUTONUMLGL \e
Modbus/ASCII is supported in its pure form. This means only the characters “0” to “9” and “A” to “F” are supported. Products that incorrectly send ASCII strings such as “2004JAN34” in raw Modbus/ASCII cannot be properly bridged with Modbus/TCP. The above string must be encoded as “323030344A414E3334” to properly bridge.

 AUTONUMLGL \e
Bridging Modbus/TCP to Serial Modbus Slave attached

 AUTONUMLGL \e
Up to 32 remote Modbus/TCP masters can connect and issues Modbus requests.

 AUTONUMLGL \e
The ME-IA manages a timed queue of Master requests, safely interleaving requests and managing full Modbus serial transactions. The serial connect will still be the bottle neck, so too many masters sending too many requests causes some to “timeout” without every being given access to the serial port. By default Modbus/TCP exception 0x0B is returned on these timeouts.

 AUTONUMLGL \e
The ME-IA manages “pipelined” Master requests in a safe, timed manner. This refers to Masters that send many requests over a single TCP socket in a non-half duplex manner. This violates the Modbus/TCP specification but is common enough that it must be supported. Each pipelined request is pulled from TCP and time-stamped. This prevents a run-away queue situation common in some Modbus/TCP slaves where too many pipelined requests build up over time.

 AUTONUMLGL \e
Multiple Modbus/TCP masters are given “fair access” to the serial port. A round-robin scheme is used such that each Master gets the chance to send 1 request before the cycle repeats. This prevents a “pipelining” master from hogging the serial link.

 AUTONUMLGL \e
The Modbus/TCP “Unit Id” value creates the Modbus serial slave address, with the exception that Unit Id zero (0) is sent as slave address one (1). There is a strong historical reason for this; the early specification said to always send a Unit Id of zero, so some applications cannot send any Unit Id but zero.

 AUTONUMLGL \e
By default, no serial broadcasts are possible. However a parameter exists that allows three behaviors related to Modbus/TCP Unit Id of zero:

· (Default) forward Unit Id zero (0) as slave address one (1)

· Discard if Unit Id is zero (0)

· Send as serial broadcast with a small fixed delay before a subsequent serial request is sent.

 AUTONUMLGL \e
By default, all Modbus/TCP messages for all Unit Id are forwarded to the serial Modbus slave. However a parameter exists that allows this to be limited to a range of numbers – for example only forward address 1 or addresses within the range 1 to 4, etc. If the range is limited, the ME-IA returns Modbus/exception code 0x0A for disabled Unit Id values.

 AUTONUMLGL \e
All Modbus requests with function codes 0x01 to 0x7F are forwarded as received based on the Modbus/TCP header length field. The ME-IA supports Vendor Extended functions.

 AUTONUMLGL \e
All Modbus responses with function codes 0x01-0x06, 0x0F, and 0x10 are returned immediately if the size matches the “estimated” size per the Modbus specification. All other Modbus functions are returned after a predefined gap timeout that defaults to 5 milliseconds, but can be redefined from 3 to 65000 milliseconds.

 AUTONUMLGL \e
Note that Enron or Daniels style 32-bit register responses are handled transparently since the correct byte count in the response will be used. The ME-IA will not adjust such responses to overcome 3rd party incompatibility.

 AUTONUMLGL \e
ME-IA does best-effort to insure Modbus responses correctly match to requests. This means matching slave address and function codes only. ME-IA does not enforce any expectation on response size, so a standard function 0x03 request for 1 register can return 1, 2, 4, or even 250 bytes of data.

 AUTONUMLGL \e
Bridging Serial Modbus Master-attached to Modbus/TCP slaves

 AUTONUMLGL \e
ME-IA behavior is strictly half-duplex. A serial Master must issue one request and wait a time period for a response.

 AUTONUMLGL \e
Default timeout behavior is no response. However the ME-IA can be configured to return Modbus exception 0x0B on slave timeout.

 AUTONUMLGL \e
By default, the ME-IA will discard any Modbus/TCP slave responses with exception code 0x0A or 0x0B. These can be enabled to pass through unchanged, however this also causes the ME-IA to return Modbus exception 0x0B on slave timeout.

 AUTONUMLGL \e
The slave address in Serial Modbus requests are mapped via a lookup table to obtain a remote IP address of the Modbus/TCP slave.

 AUTONUMLGL \e
The slave address is sent as the Modbus/TCP Unit Id in the request.

 AUTONUMLGL \e
The lookup table can contain up to 32 entries.

 AUTONUMLGL \e
Any entry in the lookup table can include an explicit IP address, or the slave address can be used as the last octet of the IP. Thus a single entry can address up to 255 IP on a specific subnet.

 AUTONUMLGL \e
The ME-IA does not allow sending to Modbus/TCP slaves whose IP addresses end in all zero or one bits based on its own subnet mask. This prevents most (but not all) ‘accidental’ IP broadcasts.

 AUTONUMLGL \e
Up to 32 remote TCP sockets can be maintained at once; default behavior is to open and hold open all sockets on first use. An idle timeout can be configured to close sockets to remote slaves after a period of inactivity. If users desire addressing more than 32 remote slaves, then they must set this idle timeout to insure sockets are closing fast enough to be reused in new connection. Thus, properly configured the ME-IA can address hundreds or even thousands of remote Modbus/TCP slaves.

 AUTONUMLGL \e
The ME-IA acting as master to remote Modbus/TCP slaves permits a single transaction to be active at one time and does not support “pipelining” within a single TCP socket. A new serial Modbus request from the attached master aborts any outstanding Modbus/TCP requests.

 AUTONUMLGL \e
Factory Default Configuration

 AUTONUMLGL \e
As Delivered by Digi

 AUTONUMLGL \e
DHCP enabled for dynamic IP address assignment

 AUTONUMLGL \e
Incoming Modbus/TCP masters enabled on TCP port 502

 AUTONUMLGL \e
Assumes Modbus/RTU serial slave attached at 9600,8,N,1 on ME’s serial port

 AUTONUMLGL \e
All incoming Modbus/TCP requests forwarded to Modbus/RTU slave

 AUTONUMLGL \e
Modbus/TCP request timeout – assume response within 2.5 seconds (includes delays for multi-master queuing), or return Modbus exception 0x0B to remote Modbus/TCP master.

 AUTONUMLGL \e
Modbus/RTU slave timeout – assume response from serial slave within 1 second of request, or return Modbus exception 0x0B to remote Modbus/TCP master.

 AUTONUMLGL \e
Modbus/RTU character timeout – assume no gaps larger than 20 milliseconds. Is only used for non-standard Modbus commands such as vendor function hex 40 and above.

 AUTONUMLGL \e
Incoming Modbus/TCP “Unit Id” used as Modbus/RTU slave address, except incoming Modbus/TCP “Unit Id” of zero (0) mapped to one (1).

 AUTONUMLGL \e
Modification by OEM customer

 AUTONUMLGL \e
A file exists within the ME that can be updated by the OEM via Ethernet during final assembly to change the factory default settings. For example, the serial link could be forced to default to 38400 baud or a serial master-attached configuration installed.

Digi Connect ME-IA
Sept-2004
Page 1 of 3

